Cesàro averages for Goldbach representations with summands in arithmetic progressions
نویسندگان
چکیده
Let [Formula: see text] be the von Mangoldt function, let an integer and counting function for Goldbach numbers with summands in arithmetic progression modulo a common text]. We prove asymptotic formula weighted average, Cesàro weight of order text], this function. Our result is uniform suitable range
منابع مشابه
On the Goldbach Conjecture in Arithmetic Progressions
It is proved that for a given integer N and for all but (log N)B prime numbers k ≤ N5/48−ε the following is true: For any positive integers bi, i ∈ {1, 2, 3}, (bi, k) = 1 that satisfy N ≡ b1 + b2 + b3 (mod k), N can be written as N = p1+p2+p3, where the pi, i ∈ {1, 2, 3} are prime numbers that satisfy pi ≡ bi (mod k).
متن کاملOn the ternary Goldbach problem with primes in arithmetic progressions of a common module
For A, ε > 0 and any sufficiently large odd n we show that for almost all k ≤ R := n 1/5−ε there exists a representation n = p 1 + p 2 + p 3 with primes p i ≡ b i mod k for almost all admissible triplets b 1 , b 2 , b 3 of reduced residues mod k.
متن کاملOn the Ternary Goldbach Problem with Primes in independent Arithmetic Progressions
We show that for every fixed A > 0 and θ > 0 there is a θ = θ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q1 = Q2 := n 1/2(log n)−θ and Q3 := (log n) θ. Then for all q3 ≤ Q3, all reduced residues a3 mod q3, almost all q2 ≤ Q2, all admissible residues a2 mod q2, almost all q1 ≤ Q1 and all admissible residues a1 mod q1, there exists a representation n = p1+...
متن کاملArithmetic progressions with constant weight
Let k ≤ n be two positive integers, and let F be a field with characteristic p. A sequence f : {1, . . . , n} → F is called k-constant, if the sum of the values of f is the same for every arithmetic progression of length k in {1, . . . , n}. Let V (n, k, F ) be the vector space of all kconstant sequences. The constant sequence is, trivially, k-constant, and thus dim V (n, k, F ) ≥ 1. Let m(k, F...
متن کاملArithmetic Progressions with Square Entries
We study properties of arithmetic progressions consisting of three squares; in particular, how one arithmetic progression generates infinitely many others, by means of explicit formulas as well as a matrix method. This suggests an equivalence relation could be defined on the arithmetic progressions, which lead to interesting problems for further study. The purpose of this paper is to investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2021
ISSN: ['1793-7310', '1793-0421']
DOI: https://doi.org/10.1142/s1793042121500937