Cesàro averages for Goldbach representations with summands in arithmetic progressions

نویسندگان

چکیده

Let [Formula: see text] be the von Mangoldt function, let an integer and counting function for Goldbach numbers with summands in arithmetic progression modulo a common text]. We prove asymptotic formula weighted average, Cesàro weight of order text], this function. Our result is uniform suitable range

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Goldbach Conjecture in Arithmetic Progressions

It is proved that for a given integer N and for all but (log N)B prime numbers k ≤ N5/48−ε the following is true: For any positive integers bi, i ∈ {1, 2, 3}, (bi, k) = 1 that satisfy N ≡ b1 + b2 + b3 (mod k), N can be written as N = p1+p2+p3, where the pi, i ∈ {1, 2, 3} are prime numbers that satisfy pi ≡ bi (mod k).

متن کامل

On the ternary Goldbach problem with primes in arithmetic progressions of a common module

For A, ε > 0 and any sufficiently large odd n we show that for almost all k ≤ R := n 1/5−ε there exists a representation n = p 1 + p 2 + p 3 with primes p i ≡ b i mod k for almost all admissible triplets b 1 , b 2 , b 3 of reduced residues mod k.

متن کامل

On the Ternary Goldbach Problem with Primes in independent Arithmetic Progressions

We show that for every fixed A > 0 and θ > 0 there is a θ = θ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q1 = Q2 := n 1/2(log n)−θ and Q3 := (log n) θ. Then for all q3 ≤ Q3, all reduced residues a3 mod q3, almost all q2 ≤ Q2, all admissible residues a2 mod q2, almost all q1 ≤ Q1 and all admissible residues a1 mod q1, there exists a representation n = p1+...

متن کامل

Arithmetic progressions with constant weight

Let k ≤ n be two positive integers, and let F be a field with characteristic p. A sequence f : {1, . . . , n} → F is called k-constant, if the sum of the values of f is the same for every arithmetic progression of length k in {1, . . . , n}. Let V (n, k, F ) be the vector space of all kconstant sequences. The constant sequence is, trivially, k-constant, and thus dim V (n, k, F ) ≥ 1. Let m(k, F...

متن کامل

Arithmetic Progressions with Square Entries

We study properties of arithmetic progressions consisting of three squares; in particular, how one arithmetic progression generates infinitely many others, by means of explicit formulas as well as a matrix method. This suggests an equivalence relation could be defined on the arithmetic progressions, which lead to interesting problems for further study. The purpose of this paper is to investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2021

ISSN: ['1793-7310', '1793-0421']

DOI: https://doi.org/10.1142/s1793042121500937